A decade of progress in tissue engineering

Tremendous progress has been achieved in the field of tissue engineering in the past decade. Several major challenges laid down 10 years ago, have been studied, including renewable cell sources, biomaterials with tunable properties, mitigation of host responses, and vascularization. Here we review advancements in these areas and envision directions of further development.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 print issues and online access

265,23 € per year

only 22,10 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Engineered biomaterials for in situ tissue regeneration

Article 06 July 2020

The stiffness of living tissues and its implications for tissue engineering

Article 21 February 2020

Ultrasound-assisted tissue engineering

Article 02 April 2024

References

  1. Langer, R. & Vacanti, J.P. Tissue engineering. Science260, 920–926 (1993). ArticleCASPubMedGoogle Scholar
  2. Khademhosseini, A., Vacanti, J.P. & Langer, R. Progress in tissue engineering. Sci. Am.300, 64–71 (2009). ArticleCASPubMedGoogle Scholar
  3. Khademhosseini, A. & Langer, R. Microengineered hydrogels for tissue engineering. Biomaterials28, 5087–5092 (2007). ArticleCASPubMedGoogle Scholar
  4. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature448, 313–317 (2007). ArticleCASPubMedGoogle Scholar
  5. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917–1920 (2007). ArticleCASPubMedGoogle Scholar
  6. Engler, A.J., Sen, S., Sweeney, H.L. & Discher, D.E. Matrix elasticity directs stem cell lineage specification 126, 677–689 (2006).
  7. DeForest, C.A., Polizzotti, B.D. & Anseth, K.S. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater.8, 659–664 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  8. DeForest, C.A. & Anseth, K.S. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem.3, 925–931 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  9. Martino, M.M., Briquez, P.S., Ranga, A., Lutolf, M.P. & Hubbell, J.A. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc. Natl. Acad. Sci. USA110, 4563–4568 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  10. Pakulska, M.M., Miersch, S. & Shoichet, M.S. Designer protein delivery: From natural to engineered affinity-controlled release systems. Science351, aac4750 (2016). ArticlePubMedCASGoogle Scholar
  11. Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater.14, 643–651 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  12. Vegas, A.J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol.34, 345–352 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  13. Langer, R. et al. Tissue engineering: biomedical applications. Tissue Eng.1, 151–161 (1995). ArticleCASPubMedGoogle Scholar
  14. Vacanti, J.P. & Langer, R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet354 (Suppl. 1): S32–S34 (1999). ArticleGoogle Scholar
  15. Qi, H. et al. DNA-directed self-assembly of shape-controlled hydrogels. Nat. Commun.4, 2275 (2013). ArticlePubMedCASGoogle Scholar
  16. Todhunter, M.E. et al. Programmed synthesis of three-dimensional tissues. Nat. Methods12, 975–981 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  17. Cohen, D.L., Malone, E., Lipson, H. & Bonassar, L.J. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng.12, 1325–1335 (2006). ArticleCASPubMedGoogle Scholar
  18. Khalil, S., Nam, J. & Sun, W. Multi-nozzle deposition for construction of 3d biopolymer tissue scaffolds. Rapid Prototyping J.11, 9–17 (2005). ArticleGoogle Scholar
  19. Miller, J.S. et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater.11, 768–774 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  20. Kolesky, D.B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater.26, 3124–3130 (2014). ArticleCASPubMedGoogle Scholar
  21. Murphy, S.V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol.32, 773–785 (2014). ArticleCASPubMedGoogle Scholar
  22. Colosi, C. et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv. Mater.28, 677–684 (2016). ArticleCASPubMedGoogle Scholar
  23. Ober, T.J., Foresti, D. & Lewis, J.A. Active mixing of complex fluids at the microscale. Proc. Natl. Acad. Sci. USA112, 12293–12298 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  24. Kang, H.-W. et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol.34, 312–319 (2016). ArticleCASPubMedGoogle Scholar
  25. Karp, J.M. & Leng Teo, G.S. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell4, 206–216 (2009). ArticleCASPubMedGoogle Scholar
  26. Ranganath, S.H., Levy, O., Inamdar, M.S. & Karp, J.M. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell10, 244–258 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  27. Sarkar, D. et al. Engineered cell homing. Blood118, e184–e191 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  28. Levy, O. et al. mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood122, e23–e32 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  29. Zuk, P.A. et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell13, 4279–4295 (2002). ArticleCASPubMedPubMed CentralGoogle Scholar
  30. De Coppi, P. et al. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol.25, 100–106 (2007). ArticleCASPubMedGoogle Scholar
  31. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science337, 816–821 (2012). CASPubMedPubMed CentralGoogle Scholar
  32. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science339, 819–823 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  33. Ran, F.A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc.8, 2281–2308 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  34. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell153, 910–918 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  35. Servick, K. Gene-editing method revives hopes for transplanting pig organs into people. Science 10.1126/science.aad4700 (2015).
  36. Reardon, S. New life for pig-to-human transplants. Nature527, 152–154 (2015). ArticleCASPubMedGoogle Scholar
  37. Reardon, S. Gene-editing record smashed in pigs. Nature 10.1038/nature.2015.18525 (2015).
  38. Azagarsamy, M.A. & Anseth, K.S. Bioorthogonal click chemistry: An indispensable tool to create multifaceted cell culture scaffolds. ACS Macro Lett.2, 5–9 (2013). ArticleCASPubMedGoogle Scholar
  39. Sakiyama-Elbert, S.E. & Hubbell, J.A. Controlled release of nerve growth factor from a heparin-containing fibrin-based cell ingrowth matrix. J. Control. Release69, 149–158 (2000). ArticleCASPubMedGoogle Scholar
  40. Sakiyama-Elbert, S.E. & Hubbell, J.A. Development of fibrin derivatives for controlled release of heparin-binding growth factors. J. Control. Release65, 389–402 (2000). ArticleCASPubMedGoogle Scholar
  41. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science341, 1240104 (2013). ArticlePubMedPubMed CentralCASGoogle Scholar
  42. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater.9, 518–526 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  43. Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater.12, 458–465 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  44. Yang, C., Tibbitt, M.W., Basta, L. & Anseth, K.S. Mechanical memory and dosing influence stem cell fate. Nat. Mater.13, 645–652 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  45. Anderson, J.M., Rodriguez, A. & Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol.20, 86–100 (2008). ArticleCASPubMedGoogle Scholar
  46. Williams, D.F. On the mechanisms of biocompatibility. Biomaterials29, 2941–2953 (2008). ArticleCASPubMedGoogle Scholar
  47. Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol.25, 677–686 (2004). ArticleCASPubMedGoogle Scholar
  48. Porcheray, F. et al. Macrophage activation switching: an asset for the resolution of inflammation. Clin. Exp. Immunol.142, 481–489 (2005). ArticleCASPubMedPubMed CentralGoogle Scholar
  49. Fishman, J.M. et al. Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model. Proc. Natl. Acad. Sci. USA110, 14360–14365 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  50. Spiller, K.L. et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials35, 4477–4488 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  51. Spiller, K.L. et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials37, 194–207 (2015). ArticleCASPubMedGoogle Scholar
  52. Brown, B.N., Ratner, B.D., Goodman, S.B., Amar, S. & Badylak, S.F. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials33, 3792–3802 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  53. Mokarram, N. & Bellamkonda, R.V. A perspective on immunomodulation and tissue repair. Ann. Biomed. Eng.42, 338–351 (2014). ArticlePubMedGoogle Scholar
  54. Du, Y., Lo, E., Ali, S. & Khademhosseini, A. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Natl. Acad. Sci. USA105, 9522–9527 (2008). ArticleCASPubMedPubMed CentralGoogle Scholar
  55. Du, Y. et al. Surface-directed assembly of cell-laden microgels. Biotechnol. Bioeng.105, 655–662 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  56. Ke, Y., Ong, L.L., Shih, W.M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science338, 1177–1183 (2012). ArticleCASPubMedGoogle Scholar
  57. Wei, B., Dai, M. & Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature485, 623–626 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  58. Park, A., Wu, B. & Griffith, L.G. Integration of surface modification and 3D fabrication techniques to prepare patterned poly(L-lactide) substrates allowing regionally selective cell adhesion. J. Biomater. Sci. Polym. Ed.9, 89–110 (1998). ArticleCASPubMedGoogle Scholar
  59. Giordano, R.A. et al. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J. Biomater. Sci. Polym. Ed.8, 63–75 (1996). ArticleCASPubMedGoogle Scholar
  60. Vozzi, G., Flaim, C., Ahluwalia, A. & Bhatia, S. Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials24, 2533–2540 (2003). ArticleCASPubMedGoogle Scholar
  61. Wilson, W.C. Jr. & Boland, T. Cell and organ printing 1: protein and cell printers. Anat. Rec. A Discov. Mol. Cell. Evol. Biol.272, 491–496 (2003). ArticlePubMedGoogle Scholar
  62. Boland, T., Mironov, V., Gutowska, A., Roth, E.A. & Markwald, R.R. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat. Rec. A Discov. Mol. Cell. Evol. Biol.272, 497–502 (2003). ArticlePubMedGoogle Scholar
  63. Malda, J. et al. 25th anniversary article: Engineering hydrogels for biofabrication. Adv. Mater.25, 5011–5028 (2013). ArticleCASPubMedGoogle Scholar
  64. Bertassoni, L.E. et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip14, 2202–2211 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  65. Lee, V.K. et al. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials35, 8092–8102 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  66. Kolesky, D.B., Homan, K.A., Skylar-Scott, M.A. & Lewis, J.A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl. Acad. Sci. USA113, 3179–3184 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  67. Bhattacharjee, T. et al. Writing in the granular gel medium. Sci. Adv.1, e1500655 (2015). ArticlePubMedPubMed CentralGoogle Scholar
  68. Christensen, K. et al. Freeform inkjet printing of cellular structures with bifurcations. Biotechnol. Bioeng.112, 1047–1055 (2015). ArticleCASPubMedGoogle Scholar
  69. Highley, C.B., Rodell, C.B. & Burdick, J.A. Direct 3d printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater.27, 5075–5079 (2015). ArticleCASPubMedGoogle Scholar
  70. Shim, J.-H., Lee, J.-S., Kim, J.Y. & Cho, D.-W.Bioprintingof a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system.. J. Micromech. Microeng.22, 085014 (2012). ArticleCASGoogle Scholar
  71. Tibbits, S. 4D printing: multi-material shape change. Architectural Design84, 116–121 (2014). ArticleGoogle Scholar
  72. Sydney Gladman, A., Matsumoto, E.A., Nuzzo, R.G., Mahadevan, L. & Lewis, J.A. Biomimetic 4D printing. Nat. Mater.15, 413–418 (2016). ArticleCASPubMedGoogle Scholar
  73. Badylak, S.F. The extracellular matrix as a scaffold for tissue reconstruction. in Seminars in Cell & Developmental Biology 377–383 (Elsevier, 2002).
  74. Ott, H.C. et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat. Med.14, 213–221 (2008). ArticleCASPubMedGoogle Scholar
  75. Badylak, S.F., Taylor, D. & Uygun, K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng.13, 27–53 (2011). ArticleCASPubMedGoogle Scholar
  76. Song, J.J. & Ott, H.C. Organ engineering based on decellularized matrix scaffolds. Trends Mol. Med.17, 424–432 (2011). ArticleCASPubMedGoogle Scholar
  77. Arenas-Herrera, J.E., Ko, I.K., Atala, A. & Yoo, J.J. Decellularization for whole organ bioengineering. Biomed. Mater.8, 014106 (2013). ArticleCASPubMedGoogle Scholar
  78. Kaushal, S. et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat. Med.7, 1035–1040 (2001). ArticleCASPubMedPubMed CentralGoogle Scholar
  79. Amiel, G.E. et al. Engineering of blood vessels from acellular collagen matrices coated with human endothelial cells. Tissue Eng.12, 2355–2365 (2006). ArticleCASPubMedGoogle Scholar
  80. Zhang, W. et al. Elastomeric free-form blood vessels for interconnecting organs on chip systems. Lab Chip16, 1579–1586 (2016). ArticlePubMedPubMed CentralCASGoogle Scholar
  81. Lu, T.-Y. et al. Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat. Commun.4, 2307 (2013). ArticlePubMedCASGoogle Scholar
  82. Ott, H.C. et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med.16, 927–933 (2010). ArticleCASPubMedGoogle Scholar
  83. Petersen, T.H. et al. Tissue-engineered lungs for in vivo implantation. Science329, 538–541 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  84. Uygun, B.E. et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med.16, 814–820 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  85. Baptista, P.M. et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology53, 604–617 (2011). ArticleCASPubMedGoogle Scholar
  86. Sullivan, D.C. et al. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials33, 7756–7764 (2012). ArticleCASPubMedGoogle Scholar
  87. Song, J.J. et al. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat. Med.19, 646–651 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  88. Atala, A., Bauer, S.B., Soker, S., Yoo, J.J. & Retik, A.B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet367, 1241–1246 (2006). ArticlePubMedGoogle Scholar
  89. Goh, S.-K. et al. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials34, 6760–6772 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  90. Teng, Y.D. et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc. Natl. Acad. Sci. USA99, 3024–3029 (2002). ArticleCASPubMedPubMed CentralGoogle Scholar
  91. Niklason, L.E. et al. Functional arteries grown in vitro. Science284, 489–493 (1999). ArticleCASPubMedGoogle Scholar
  92. Lancaster, M.A. et al. Cerebral organoids model human brain development and microcephaly. Nature501, 373–379 (2013). ArticleCASPubMedGoogle Scholar
  93. Choi, S.H. et al. A three-dimensional human neural cell culture model of Alzheimer's disease. Nature515, 274–278 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  94. Huh, D., Hamilton, G.A. & Ingber, D.E. From 3D cell culture to organs-on-chips. Trends Cell Biol.21, 745–754 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  95. Moraes, C., Mehta, G., Lesher-Perez, S.C. & Takayama, S. Organs-on-a-chip: a focus on compartmentalized microdevices. Ann. Biomed. Eng.40, 1211–1227 (2012). ArticlePubMedGoogle Scholar
  96. Wikswo, J.P. The relevance and potential roles of microphysiological systems in biology and medicine. Exp. Biol. Med.239, 1061–1072 (2014). ArticleCASGoogle Scholar
  97. Bhatia, S.N. & Ingber, D.E. Microfluidic organs-on-chips. Nat. Biotechnol.32, 760–772 (2014). ArticleCASPubMedGoogle Scholar
  98. Bhise, N.S. et al. Organ-on-a-chip platforms for studying drug delivery systems. J. Control. Release190, 82–93 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  99. Zhang, Y.S. & Khademhosseini, A. Seeking the right context for evaluating nanomedicine: from tissue models in petri dishes to microfluidic organs-on-a-chip. Nanomedicine (Lond.)10, 685–688 (2015). ArticleCASGoogle Scholar
  100. Esch, E.W., Bahinski, A. & Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov.14, 248–260 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  101. Ingber, D.E. Reverse engineering human pathophysiology with organs-on-chips. Cell164, 1105–1109 (2016). ArticleCASPubMedGoogle Scholar
  102. Ebrahimkhani, M.R., Neiman, J.A., Raredon, M.S.B., Hughes, D.J. & Griffith, L.G. Bioreactor technologies to support liver function in vitro. Adv. Drug Deliv. Rev.69-70, 132–157 (2014). ArticleCASPubMedGoogle Scholar
  103. Huh, D. et al. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc. Natl. Acad. Sci. USA104, 18886–18891 (2007). ArticleCASPubMedPubMed CentralGoogle Scholar
  104. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science328, 1662–1668 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  105. Wilmer, M.J. et al. Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol.34, 156–170 (2016). ArticleCASPubMedGoogle Scholar
  106. Kim, S., Lee, H., Chung, M. & Jeon, N.L. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip13, 1489–1500 (2013). ArticleCASPubMedGoogle Scholar
  107. Kim, H.J., Huh, D., Hamilton, G. & Ingber, D.E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip12, 2165–2174 (2012). ArticleCASPubMedGoogle Scholar
  108. Torisawa, Y.-S. et al. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat. Methods11, 663–669 (2014). ArticleCASPubMedGoogle Scholar
  109. Nawroth, J.C. et al. A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol.30, 792–797 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  110. Shin, S.R. et al. Aligned carbon nanotube-based flexible gel substrates for engineering bio-hybrid tissue actuators. Adv. Funct. Mater.25, 4486–4495 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  111. Raman, R. et al. Optogenetic skeletal muscle-powered adaptive biological machines. Proc. Natl. Acad. Sci. USA113, 3497–3502 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  112. Menze, M.A. et al. Metabolic preconditioning of cells with AICAR-riboside: improved cryopreservation and cell-type specific impacts on energetics and proliferation. Cryobiology61, 79–88 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  113. Heo, Y.S. et al. “Universal” vitrification of cells by ultra-fast cooling. Technology (Singap. World Sci.)3, 64–71 (2015). Google Scholar
  114. Bruinsma, B.G. et al. Supercooling preservation and transplantation of the rat liver. Nat. Protoc.10, 484–494 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar

Author information

Authors and Affiliations

  1. Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA Ali Khademhosseini
  2. Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA Ali Khademhosseini & Robert Langer
  3. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA Ali Khademhosseini
  4. Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea Ali Khademhosseini
  5. Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia Ali Khademhosseini
  6. David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Robert Langer
  7. Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA Robert Langer
  8. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Robert Langer
  9. Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Robert Langer
  1. Ali Khademhosseini